
The Impact of the Number of Cooperating

Grammars on the Generative Power

Lila Santean & Jarkko Kari

Mathematics Department
University of Turku

20500 Turku, Finland

June 7, 2010

Abstract

The parallel communicating grammar systems consist of gram-
mars working synchronously and sending messages one to each
other. In this paper, hierarchies of classes of languages generated
by such devices are investigated.

1 Introduction

Many attempts have been made for finding a suitable model for parallel com-
puting (see [9] for an algebraic and [1, 8] for an automata theoretical approach).
Parallel Communicating Grammar Systems (PCGS) have been introduced in
[6] as a grammatical model in this aim, trying to involve as few as possible
non-syntactic components.

A PCGS of degree n consists of n separate usual Chomsky grammars, work-
ing simultaneously, each of them starting from its own axiom; furthermore, each
grammar i can ask from the grammar j the string generated so far. The result
of this communication is that grammar i includes in its own string the string
generated by grammar j, and that grammar j returns to its axiom and resumes
working. One of the grammars is distinguished as a master grammar and the
terminal strings generated by it constitute the language generated by the PCGS.

Many variants of PCGS can be defined, depending on the communication
protocol (see [2]), on the type of the grammars involved (see [6], [3]), and so
on. An important particular case is the centralized one, where only the master
grammar is allowed to ask for strings generated by the others.

We investigate here infinite hierarchies of classes of languages generated by
centralized or noncentralized PCGS with regular or context-free components,

1

determined by the degree of the PCGS, that is, the number of grammars in-
volved.

2 Definitions and notations

We assume the reader familiar with basic definitions and notations in formal
language theory (see [7]) and we specify only some notions related to PCGS.

For a vocabulary V , we denote by V ∗ the free monoid generated by V under
the operation of concatenation, and by λ the null element. For x ∈ V ∗, |x| is the
length of x and if K is a set, |x|K denotes the number of occurrences of letters
of K in x. We denote by REG, LIN, CF, CS, the classes of regular, linear,
context-free and context-sensitive grammars.

Definition A PCGS of degree n, n ≥ 1, is a system

π = (G1, G2, . . . , Gn)

where Gi = (VN,i, VT,i, Si, Pi), 1 ≤ i ≤ n, are Chomsky grammars such that
VN,i

⋂

VT,j = ∅ for all i, j ∈ {1, 2, . . . , n}, VT,i ⊆ VT,1, 2 ≤ i ≤ n, and there is a
set K ⊆ {Q1, Q2, . . . , Qn}, of communication symbols, K ⊆

⋃n

i=1 VN,i, used in
derivations as follows.

For (x1, x2, . . . , xn), (y1, . . . , yn), xi, yi ∈ V ∗

Gi
, 1 ≤ i ≤ n (VGi

= VN,i ∪ VT,i),
we write (x1, . . . , xn) =⇒ (y1, . . . , yn) if one of the next two cases holds:

(i) |xi|K = 0 for all i, 1 ≤ i ≤ n, and xi =⇒ yi in the grammar Gi, or
xi ∈ V ∗

T,i, xi = yi, 1 ≤ i ≤ n;

(ii) if |xi|K > 0 for some i, 1 ≤ i ≤ n, then for each such i we write
xi = z1Qi1z2Qi2 . . . ztQit

zt+1, t ≥ 1, |zj|K = 0, 1 ≤ j ≤ t + 1; if |xij
|K =

0, 1 ≤ j ≤ t, then yi = z1xi1z2xi2 . . . ztxit
zt+1 and yij

= Sij
, 1 ≤ j ≤ t;

when, for some j, 1 ≤ j ≤ t, |xij
|K > 0, then yi = xi. For all remaining

indexes i, that is, for those i, 1 ≤ i ≤ n, for which xi does not contain
communication symbols, we put yi = xi.

Informally, an n-tuple (x1, x2, . . . , xn) directly yields (y1, y2, . . . , yn) if either
no communication symbol appears in x1, . . . , xn and we have a componentwise
derivation, xi =⇒ yi in Gi, for each i, 1 ≤ i ≤ n, or communication symbols
appear and we perform a communication step, as these symbols impose: each
occurrence of Qij

in xi is replaced by xij
, provided xij

does not contain further
communication symbols.

A derivation consists of rewriting steps and communication steps.
If no communication symbol appears in any of the components, we perform

a rewriting step which consists of a rewriting step performed synchronously in
each of the grammars. If one of the components is a terminal string, it is left
unchanged while the others are performing the rewriting step. If in one of the

2

components none of the nonterminals can be rewritten any more, the derivation
is blocked.

If in any of the components a communication symbol is present, a communi-
cation step is performed. It consists of replacing all the occurrences of communi-
cation symbols with the components they refer to, providing these components
do not contain further communication symbols. If some communication sym-
bols are not satisfied in this step, they may be satisfied in one of the next ones.
Communication steps are performed until no more communication symbols are
present. No rewriting is allowed if any communication symbol occurs in one of
the components. Therefore, if circular queries emerge, the derivation is blocked.

The language generated by the system consists of the terminal strings gen-
erated on the first position, regardless the other components (terminal or not):

L(π) =
{

α ∈ V ∗

T,1|(S1, S2, . . . , Sn) =⇒∗ (α, β2, β3, . . . , βn)
}

If we impose the restriction that only the first grammar may ask for strings
generated by the others, that is K

⋂

(
⋃n

i=2 VN,i) = ∅, we obtain the centralized
case.

We denote by PCn(X) (respectively CPCn(X)) the family of noncentral-
ized (centralized) PCGS of degree n with all the components being type-X
grammars, X ∈ {REG, LIN, CF, CS} and by L(PCn(X)) (L(CPCn(X))) the
families of languages generated by these types of PCGS. Furthermore, PC(X)
denotes

⋃

∞

n=1 PCn(X) and CPC(X) denotes
⋃

∞

n=1 CPCn(X).
Let us give now a simple example that shows the generative power of PCGS.

Example 1 Let π be the PCGS π = (G1, G3, G3) where

G1 = ({S1, S
′

1, S2, S3, Q2, Q3}, {a, b, c}, S1, {S1 −→ abc,

S1 −→ a2b2c2, S1 −→ a3b3c3, S1 −→ aS′

1, S
′

1 −→ aS′

1,

S′

1 −→ a3Q2, S2 −→ b2Q3, S3 −→ c}
)

G2 = ({S2}, {b}, {S2 −→ bS2})

G3 = ({S3}, {c}, {S3 −→ cS3}) .

This is a regular centralized PCGS of degree 3 and it is easy to see that we have

L(π) = {anbncn|n ≥ 1}

which is a non-context-free language.

3 Infinite hierarchies of the language classes L(CPCn(REG))
and L(PCn(REG))

In [6], [3], [5], [4] and [2] various properties of PCGS have been investigated,
including the generative power, closure under basic operations, complexity, and
efficiency.

3

As concerning hierarchies of classes of languages generated by PCGS, it is
obvious that

CPCn(X) ⊆ CPCn+1(X), for all n ≥ 1 and X ∈ {REG,LIN,CF,CS},
PCn(X) ⊆ PCn+1(X), for all n ≥ 1 and X ∈ {REG,LIN,CF,CS}.

We shall prove in the following that for X = REG, the inclusions are proper.
Moreover, for the centralized case, a more general result, namely a pumping
lemma, is obtained, but such a lemma cannot be proved for the noncentralized
case.

Lemma 1 (Pumping lemma) Let L ∈ CPCn(REG). There exists a natural
number N such that every word α in L satisfying |α| > N can be decomposed as

α = α1β1α2β2 . . . αmβmαm+1

where 1 ≤ m ≤ n, βi 6= λ for 1 ≤ i ≤ m and the word

α1β
k
1 α2β

k
2 . . . αmβk

mαm+1

is in L for all k ≥ 0.

Proof. Let π = (G1, G2, . . . , Gn) be a centralized PCGS of degree n, where Gi

are regular grammars, Gi = (VN,i, VT,i, Si, Pi), 1 ≤ i ≤ n. In order to be able
to iterate portions of the derivation, for obtaining the pumping effect, ”similar”
configurations have to be found. Therefore, we first proceed by clarifying the
notion of similarity.

In every configuration of π, each component has at most one nonterminal.
Let c1 = (x1A1, x2A2, . . . , xnAn) and c2 = (y1B1, y2B2, . . . , ynBn) be two con-
figurations where xi, yi are terminal strings and Ai, Bi are nonterminals or λ,
for 1 ≤ i ≤ n.

The configurations c1 and c2 are called equivalent (denoted by c1 ≡ c2) if
Ai = Bi for each i, 1 ≤ i ≤ n. Clearly, ≡ is an equivalence relation and the
number of equivalence classes is

A =
n

∏

i=1

(|VN,i| + 1).

However, the condition that two configuration are equivalent is not sufficient for
iterating the subderivation between them, because communication steps may
possibly occur. Therefore, a stronger condition has to be imposed on the two
configurations in this aim, namely

(i) c1 ≡ c2,

(ii) if the communication symbol Qi, 2 ≤ i ≤ n is used in the derivation
between c1 and c2, then xi = yi.

4

It will be shown in the following that in any derivation of length Mn there ex-
ist two configurations satisfying the conditions (i) and (ii), where Mn is defined
recursively below:

M1 = A,

Mj+1 = A · (P + 1)j·Mj , for 1 ≤ j ≤ n − 1.

P denotes the maximum number of productions that exist in any of the gram-
mars G2, G3, . . . , Gn, for any nonterminal. (We notice that starting from any
nonterminal there are no more than (P + 1)n different derivations of length at
most n in any of the grammars.)

Claim: For every j, 1 ≤ j ≤ n, in any derivation of π of length Mj where less
than j different communication symbols are used, there are two configurations
satisfying both conditions (i) and (ii).

The claim is proved using induction on j.
If j = 1 then no communication symbols are used in the derivation and (ii)

is trivially true. Since the length of the derivation is M1 = A, there are A + 1
configurations in it. The number of equivalence classes of ≡ is A, so the pigeon
hole principle says that (i) holds true for some configurations.

Suppose then that the claim has been proved for j. Consider a derivation of
length Mj+1 where at most j different communication symbols are present. If
it contains a subderivation of length Mj where less than j different communi-
cation symbols are used, then, according to the induction hypothesis, the two
configurations of the claim can be found inside this subderivation.

On the other hand, suppose that all the different communication symbols
that are used in the derivation of length Mj+1 are also used in each of its
subderivations of length Mj . In the derivation there are Mj+1+1 configurations.
More than (P +1)j·Mj of them must be in the same equivalence class of ≡, thus
satisfying (i).

Suppose that Qi is a communication symbol that is used in the derivation.
The nearest occurrence of Qi preceding any configuration must appear in one
of the Mj predecessor configurations. Considering that after communicating,
the sending grammar returns to its axiom, it follows that there may exist at
most (P + 1)Mj different i-th components in the configurations. If one counts
the possibilities for all the components that correspond to all communication
symbols that appear in the derivation, one gets (P +1)j·Mj different cases. This
means that we have at most (P + 1)j·Mj configurations in the derivation which
differ by at least one component whose corresponding communication symbol
has been used in the derivation. An application of the pigeon hole principle
tells that there are two configurations in the same equivalence class which also
satisfy (ii).

So, the claim has been proved. Let us return now to the pumping lemma.
Let α be a word in the language generated by π, whose length is at least n ·

max ·Mn, where max is the maximum length of the right sides of all productions.

5

Then the length of the minimal derivation of α is at least Mn.
We have already shown that during this derivation there exist two configura-

tions c1 = (x1R1, x2R2, . . . , xnRn) and c2 = (y1R1, y2R2, . . . , ynRn) satisfying
the conditions (i) and (ii) :

(S1, S2, . . . , Sn) =⇒∗ (x1R1, x2R2, . . . , xnRn)

=⇒∗ (x1z1R1, x2z2R2, . . . , xnznRn)

=⇒∗ (α, . . .)

If Qi is used between c1 and c2 then, according to property (ii), zi = λ.
As concerning the remaining components, one of the following cases holds:

(i). z1 is a nonempty terminal word, z1 ∈ V +
T,1,

(ii). There exists one index j such that Qj is not used in the derivation between
c1 and c2, Qj is used in the derivation of α which starts with c2, and zj is
a nonempty terminal word over V +

T,j .

Indeed, if neither of these cases holds, this implies that the components of c1

and c2 are identical on the positions which are actually used in the construction
of α. This would however imply that we can remove the subderivation c1 =⇒∗ c2

obtaining a shorter legal derivation of α — contradiction with the assumption
of minimality of the derivation.

The derivation steps between c1 and c2 may be repeated k times for any k.
After this iteration, the components j for which zj is a nonempty terminal word
will be of the form xjz

k
j Rj and the other ones will remain unchanged.

If, after k iterations the derivation is continued by adding the steps of the
subderivation c2 =⇒∗ (α, . . .), a legal derivation of a terminal word generated
by π is obtained. The word differs from α slightly: zj is replaced by zk

j if j = 1
or Qj is used in the derivation steps after iteration, but not within it.

As the number of the subwords which can be thus pumped is at most n, the
lemma is proved.

We are now in position to prove the following

Theorem 1 For all n > 1

L(CPCn(REG)) \ L(CPCn−1(REG)) 6= ∅.

Proof. For every n > 1 let Ln be the language

Ln =
{

ak+1
1 ak+2

2 . . . ak+n
n |k ≥ 0

}

.

Ln is contained in the family L(CPCn(REG)) as it is generated by the PCGS
πn = (G1, G2, . . . , Gn) where

G1 = ({S1, S2, . . . , Sn, Q2, Q3, . . . , Qn}, {a1, a2, . . . , an}, S1, P1) ,

6

P1 = {S1 −→ a1S1,

Si −→ aiQi+1 for 1 ≤ i ≤ n − 1,

Sn −→ an},

and when 2 ≤ i ≤ n

Gi = ({Si}, {ai}, Si, {Si −→ aiSi}) .

However, the language Ln is not contained in L(CPCn−1(REG)). Indeed,
let us assume that Ln is generated by πn−1 ∈ CPCn−1(REG). Let N be the
number whose existence is stated by the pumping lemma, and α the word

α = aN+1
1 aN+2

2 . . . aN+n
n .

Following the lemma, the words αi obtained from α by pumping at most n− 1
subwords of it are in Ln — contradiction with the form of the words of Ln.

We can conclude that the inclusions L(CPCn−1(REG)) ⊂ L(CPCn(REG))
are proper for every n > 1.

Corollary The hierarchy L(CPCn(REG)), n ≥ 1, is infinite.

Note. A similar pumping lemma does not hold for languages generated by
noncentralized PCGS of degree n, and that is proven by the following example.

Example 2 Let π = (G1, G2, G3) where

G1 = ({S1, B, B1, Q2}, {a}, S1, {S1 −→ aB,

S1 −→ Q2, B1 −→ B, B −→ λ, B1 −→ λ})

G2 = ({S2, B, Q1, Q3}, {a}, S2, {S2 −→ Q1, B −→ Q3})

G3 = ({S3, Q1, B, B1}, {a}, S3, {S3 −→ Q1, B −→ B1}) .

A derivation according to π will have the following form :

(S1, S2, S3) =⇒ (aB, Q1, Q1) =⇒ (S1, aB, aB) =⇒ (Q2, aQ3, aB1)

=⇒ (Q2, a
2B1, S3) =⇒ (a2B1, S2, S3)

=⇒ (a2B, Q1, Q1) =⇒ (S1, a
2B, a2B)

=⇒∗ (a2n−1

B, Q1, Q1) =⇒ (S1, a
2n−1

B, a2n−1

B)

=⇒ (Q2, a
2n−1

Q3, a
2n−1

B1) =⇒ (Q2, a
2n

B1, S3)

=⇒ (a2n

B1, S2, S3) =⇒ (a2n

, Q1, Q1), for any n ≥ 1.

We notice that in all the cases where the production S1 −→ aB was applicable
instead of S1 −→ Q2, its application would have inevitably led to the word a.
Therefore we conclude that

L(π) =
{

a2n

|n ≥ 0
}

.

7

If a pumping lemma would hold for languages in L(PC(REG)), then the set
of lengths of words of any infinite language in L(PC(REG)) would contain an
infinite arithmetical progression. The lengths of words in L(π) ∈ L(PC3(REG))
grow exponentially, therefore such an infinite arithmetical progression cannot be
found. So, a pumping lemma for languages generated by noncentralized PCGS
of degree n does not hold.

However, even if such a lemma is not true, the infinity of the hierarchy
L(PC(REG)) can be directly proven by finding a language that can be generated
by a noncentralized PCGS of degree m + 1 but not by a noncentralized PCGS
of degree m.

Theorem 2 For all m ≥ 1

L(PCm+1(REG)) \ L(PCm(REG)) 6= ∅.

Proof. Let L be the language

L = {an
1an

2 . . . an
2m|n ∈ N}

We shall prove the theorem by showing that L belongs to L(PCm+1(REG)) but
not to L(PCm(REG)). In the following we show that L is equal to the language
generated by the PCGS

π = (G1, G2, . . . , Gm+1) ∈ PCm+1(REG)

where Gi = (VN,i, VT,i, Si, Pi) are regular grammars for 1 ≤ i ≤ m + 1 and

VT,i = {a1, a2, . . . , a2m}, 1 ≤ i ≤ m + 1

VN,1 = {S1} ∪ {Qi|2 ≤ i ≤ m + 1} ∪ {Xk
2 |1 ≤ k ≤ 2m + 1}

∪{X2m+1
j |2 ≤ j ≤ m + 1}

VN,i = {Si, αi} ∪ {Qi−1, Qi+1} ∪ {Xk
i |1 ≤ k ≤ 2m + 1}

∪{Xk
i+1|i ≤ k ≤ 2m − i + 1}, 2 ≤ i ≤ m

VN,m+1 = {Sm+1, αm+1} ∪ {Qm} ∪ {Xk
m+1|1 ≤ k ≤ 2m + 1}

P1 = {S1 −→ a1Q2, X
1
2 −→ a2X

2
2 , S1 −→ a1a2 . . . a2m,

X2m+1
m+1 −→ a2m} ∪ {Xk

2 −→ Xk+1
2 |2 ≤ k < 2m}

∪{X2m+1
j −→ a2j−2a2j−1Qj+1|2 ≤ j ≤ m},

Pj = {Sj −→ X1
j , Sj −→ a2j−1Qj+1, Sj −→ Qj−1, Sj −→ αj}

∪{Xk
j −→ Xk+1

j |1 ≤ k < j − 1}

∪{Xj
j+1 −→ a2jX

j+1
j+1}

∪{Xk
j+1 −→ Xk+1

j+1 |j < k ≤ 2m − j}

8

∪{Xk
j −→ Xk+1

j |2m− j + 1 < k ≤ 2m − 1}

∪{X2m
j −→ X1

j , X2m
j −→ X2m+1

j }

∪{X2m+1
j −→ X2m+1

j }

∪{αj −→ αj}, for 2 ≤ j ≤ m

Pm+1 = {Sm+1 −→ X1
m+1, Sm+1 −→ Qm, Sm+1 −→ αm+1,

X2m
m+1 −→ X1

m+1, X
2m+1
m+1 −→ X2m+1

m+1 , αm+1 −→ αm+1}

∪{Xk
m+1 −→ Xk+1

m+1|1 ≤ k ≤ 2m, k 6= m}

For proving that L ⊆ L(π) we shall show that, for every n, the word
an
1an

2 . . . an
2m can be generated by π.

Claim: For all n ∈ N, there exists a derivation D : (S1, S2, . . . , Sm+1) =⇒∗

(

a1Q2, a
n
1an

2X1
2 , . . . , an

2m−1a
n
2mX1

m+1

)

, according to π.
The claim shall be proved by induction on n. For n = 0, we can construct

the derivation

(

S1, S2, . . . , Sm+1) =⇒ (a1Q2, X
1
2 , . . . , X1

m+1

)

.

Let us suppose now that there exists a derivation D

(S1, S2, . . . , Sm+1) =⇒∗
(

a1Q2, a
n
1an

2X1
2 , . . . , an

2m−1a
n
2mX1

m+1

)

.

We shall construct a valid derivation D′ for the configuration

(

a1Q2, a
n+1
1 an+1

2 X1
2 , . . . , an+1

2m−1a
n+1
2m X1

m+1

)

.

The idea of the construction is the following. We shall add a subderivation
to the derivation D, such that every component, excepting the first one, shall
have in the end the exponent increased by one. The increasing of the exponent
implies the catenation of one letter to the left side of the terminal word, and one
to the right. This wouldn’t be possible in an ordinary regular grammar, where
the letters are only added to one end. Using the communication, letters can
be added here to both ends of the terminal word of some component. This is
done first by communicating the word to the left component. Together with the
communication symbol, a letter is produced, that means it is catenated to the
left end of the word. Afterwards, working in this auxiliary component another
letter is produced, that means it is catenated to the right. Finally, (after the
change has been made in all components) the new word is communicated back
to the original component where it belonged.

This procedure can be applied in a chain, from left to right, using the fact
that we have one grammar for which we do not need to change the word, that
is we have an auxiliary place. After all the needed letters are produced, the
new strings are in components situated to the left of their original ones. Then,
beginning with the m’th component, the strings are moved one position to the

9

right, and the requested configuration is obtained. Special attention has to be
paid to the components in the ”waiting status”, because the changing of the
string is only done for one component at a time. Therefore, until the turn of a
particular component to be communicated comes, only renamings are performed
in it, the upper index of the nonterminals Xk

j , 1 ≤ j ≤ m + 1, 1 ≤ k ≤ 2m + 1
counting the ”waiting” steps.

The derivation D′ has therefore the following form:

(

a1Q2, . . . , a
n
2j−3a

n
2j−2X

1
j , an

2j−1a
n
2jX

1
j+1, . . . , a

n
2m−1a

n
2mX1

m+1

)

⇓
j − 1 rewriting steps and
j − 1 communication steps

(

an+1
1 an+1

2 X
j
2 , . . . , a2j−1Qj+1, a

n
2j−1a

n
2jX

j
j+1, . . . , a

n
2m−1a

n
2mX

j
m+1

)

⇓ communication step

(an+1
1 an+1

2 X
j
2 , . . . , an+1

2j−1a
n
2jX

j
j+1, Sj+1, . . . , a

n
2m−1a

n
2mX

j
m+1)

⇓ rewriting step

(an+1
1 an+1

2 X
j+1
2 , . . . , an+1

2j−1a
n+1
2j X

j+1
j+1 , a2j+1Qj+2, . . . , a

n
2m−1a

n
2mX

j+1
m+1)

⇓∗

m − j communication steps and
m − j − 1 rewriting steps

(an+1
1 an+1

2 Xm
2 , . . . , an+1

2j−1a
n+1
2j Xm

j+1, a
n+1
2j+1a

n+1
2j+2X

m
j+2, . . . , Sm+1)

⇓ rewriting step

(an+1
1 an+1

2 Xm+1
2 , . . . , an+1

2j−1a
n+1
2j Xm+1

j+1 , an+1
2j+1a

n+1
2j+2X

m+1
j+2 , . . . , Qm)

⇓∗

m communication steps and
m − 1 rewriting steps

(S1, . . . , a
n+1
2j−3a

n+1
2j−2X

2m
j , an+1

2j−1a
n+1
2j X2m

j+1, . . . , a
n+1
2m−1a

n+1
2m X2m

m+1)

⇓ rewriting step

(a1Q2, . . . , a
n+1
2j−3a

n+1
2j−2X

1
j , an+1

2j−1a
n+1
2j X1

j+1, . . . , a
n+1
2m−1a

n+1
2m X1

m+1).

We have found a derivation according to π for the configuration requested
by the induction step, therefore the claim is proved.

The membership of the word an
1an

2 . . . an
2m in L(π) for every n ≥ 1 follows

now from the claim. Indeed, we replace the last step of the derivation D (in
which a new round is started) with a subderivation which plays the role of
collecting all the strings in the first component, in the correct order.

10

Therefore we have:

(S1, S2, . . . , Sm+1) =⇒∗ (S1, a
n
1an

2X2m
2 , . . . , an

2m−1a
n
2mX2m

m+1)

=⇒ (a1Q2, a
n
1an

2X2m+1
2 , . . . , an

2m−1a
n
2mX2m+1

m+1)

=⇒ (an+1
1 an

2X2m+1
2 , S2, . . . , a

n
2m−1a

n
2mX2m+1

m+1)

=⇒ (an+1
1 an+1

2 a3Q3, α2, . . . a
n
2m−1a

n
2mX2m+1

m+1)

=⇒∗ (an+1
1 an+1

2 . . . an
2mX2m+1

m+1 , α2, . . . , αm, Sm+1)

=⇒ (an+1
1 an+1

2 . . . an+1
2m , α2, . . . , αm, αm+1).

The converse inclusion follows because, except the alternative of stopping
the derivation, the use of other productions than the ones we have actually
used leads to the blocking of the derivation (either by introducing nonterminals
which cannot be further rewritten, or by introducing circular communication
requests). This implies that the only words that can be generated by the PCGS
π are the ones of the form an

1an
2 . . . an

2m.
We have therefore proven that L(π) = L, which shows that L belongs to

L(PCm+1(REG)).
Next we prove that L 6∈ L(PCm(REG)). Let us assume, on the contrary,

that there exists a PCGS π′ ∈ PCm(REG) such that L = L(π′).
There exists a function f : N → N such that, every configuration obtainable

from the initial one after n steps (we count the rewriting as well as the commu-
nication steps) possesses only components of length less than f(n). In fact it
is easy to see that we can choose f(n) = max · 2n, where max is the maximum
length of the right sides of all productions. Let p be the number of equivalence
classes determined by the equivalence relation ≡ defined in the Pumping lemma.

Let now w be the word w = a
f(2p)
1 . . . a

f(2p)
2m and D a minimal derivation of it.

The length of the derivation is greater than 2p, therefore, during the first p steps
we find two equivalent configurations:

(S1, . . . , S2m) =⇒∗ c1 = (x1A1, . . . , xmAm)

=⇒∗ c2 = (y1A1, . . . , ymAm)

=⇒∗ (w, . . .),

where |xi|, |yi| < f(p) for every 1 ≤ i ≤ m.

We first notice that no word yi, 1 ≤ i ≤ m which contains more than two
different letters can become a subword of w. This follows because, if some ”use-
ful” yi would contain at least three different letters, the exponent of the middle
letter would remain less than f(2p) — contradiction. We further notice that all
terminal letters must appear in some ”useful” yi, 1 ≤ i ≤ n. Indeed, let’s sup-
pose that some letter would be only generated after the appeareance of c2. Then
we could construct a derivation obtained from D by continuing the subderiva-
tion which ends with c1 with the steps of the subderivation c2 =⇒∗ (w, . . .).

11

The word obtained in this way is a terminal one, different from w (recall that
D is a minimal derivation) but still the exponent of the letter generated in
the last mentioned subderivation is f(2p) — contradiction. Combining these
two observations, we conclude that every word yi, 1 ≤ i ≤ m is of the form
yi = a

qj

j a
qk

k , 1 ≤ j, k ≤ 2m, j 6= k, qj + qk < f(p), and all terminal letters appear
in some yi.

As the derivation D has the length greater than 2p, we shall find among the
configurations that follow c2 two more equivalent configurations:

D : (S1, . . . , Sm) =⇒∗ c2 = (y1A1, . . . , ymAm)

=⇒∗ c3 = (z1B1, . . . , zmBm)

=⇒∗ c4 = (t1B1, . . . , tmBm)

=⇒∗ (w, . . .).

Using a similar reasoning as above and the fact that all the letters of w appear
already in the components of c2, we conclude that c3 and c4 have the same
properties as c2 regarding their form and contribution to w. No communication
step is involved in the derivation between them (if that would be the case we
would find in c4 a component ti containing more than 2 different letters).

If we construct now a derivation obtained from D by continuing from c3

with the steps of the subderivation c4 =⇒∗ (w, . . .) we obtain a word in L(π)
in which some letters have f(2p) occurrences (regular rewriting can add letters
only to the right, so that the number of some terminal letters does not change
in the subderivation c3 =⇒∗ c4). However, the word obtained cannot be w,
because D was a minimal derivation of w — contradiction.

It follows that our assumption that L can be generated by a PCGS of degree
m with regular components is false. We have proved that L can be generated
by a regular PCGS of degree m + 1 but not by a regular PCGS of degree m.

Corollary The hierarchy L(PCn(REG)), n ≥ 1 is infinite.

Corollary For all m ≥ 1

L(CPC2m(REG)) \ L(PCm(REG)) 6= ∅.

It follows from the proofs of theorems 1 and 2.

Example 3 As an example of the PCGS’s constructed in the proof of the
previous theorem we present the PCGS π3 = (G1, G2, G3) of degree 3 generating
the language {an

1 an
2an

3an
4 |n ≥ 1}. The components are defined as follows:

G1 =
({

S1, Q2, Q3, X
1
2 , X2

2 , X3
2 , X4

2 , X5
2 , X5

3

}

, {a1, a2, a3, a4} , S1,
{

S1 −→ a1Q2, X
1
2 −→ a2X

2
2 , X2

2 −→ X3
2 , X3

2 −→ X4
2 ,

S1 −→ a1a2a3a4, X
5
2 −→ a2a3Q3, X

5
3 −→ a4

})

12

G2 =
({

S2, Q1, Q3, X
1
2 , X2

2 , X3
2 , X4

2 , X5
2 , X2

3 , X3
3 , α2

}

, {a1, a2, a3, a4} , S2,
{

S2 −→ X1
2 , S2 −→ a3Q3, S2 −→ Q1, X

2
3 −→ a4X

3
3 , X4

2 −→ X1
2 ,

X4
2 −→ X5

2 , X5
2 −→ X5

2 , S2 −→ α2, α2 −→ α2

})

G3 =
({

S3, Q2, X
1
3 , X2

3 , X3
3 , X4

3 , X5
3 , α3

}

, {a1, a2, a3, a4} , S3,
{

S3 −→ X1
3 , S3 −→ Q2, X

1
3 −→ X2

3 , X3
3 −→ X4

3 , X4
3 −→ X1

3 ,

X4
3 −→ X5

3 , X5
3 −→ X5

3 , S3 −→ α3, α3 −→ α3

})

Derivation according to π3 has the following form:

(S1, S2, S3) =⇒ (a1Q2, X
1
2 , X1

3) =⇒ (a1X
1
2 , S2, X

1
3)

=⇒ (a1a2X
2
2 , a3Q3, X

2
3) =⇒ (a1a2X

2
2 , a3X

2
3 , S3)

=⇒ (a1a2X
3
2 , a3a4X

3
3 , Q2) =⇒ (a1a2X

3
2 , S2, a3a4X

3
3)

=⇒ (a1a2X
4
2 , Q1, a3a4X

4
3) =⇒ (S1, a1a2X

4
2 , a3a4, X

4
3)

=⇒∗ (S1, a
n
1an

2X4
2 , an

3an
4X4

3) =⇒ (a1Q2, a
n
1an

2X5
2 , an

3an
4 X5

3)

=⇒ (an+1
1 an

2X5
2 , S2, a

n
3an

4X5
3)

=⇒ (an+1
1 an+1

2 a3Q3, α2, a
n
3an

4X5
3)

=⇒ (an+1
1 an+1

2 an+1
3 an

4 X5
3 , α2, S3)

=⇒ (an+1
1 an+1

2 an+1
3 an+1

4 , α2, α3).

The problem of the infinity of the hierarchies L(PCn(X)) and L(CPCn(X)),
n ≥ 1 remains open for X ∈ {CF, CS}. The conjecture is that L(PCn(CF)),
L(CPCn(CF)), n ≥ 1 are infinite. Still, this cannot be proved using a similar
pumping lemma that we have used above, because such a lemma does not hold.

Indeed, let us consider the following PCGS: π = (G1, G2), where

G1 = ({S1, Q2, S2}, {a1, a2, a3, a4}, S1,

{S1 −→ a1S1a2, S1 −→ a1Q
k
2a2, S2 −→ λ}

)

G2 = ({S2}, {a3, a4}, S2, {S2 −→ a3S2a4}) .

It is easy to see that the the language generated by π is

L(π) = {an
1 (an

3an
4)

k
an
2 |n ≥ 1}

Suppose that there is a pumping lemma analogous to the one presented earlier
for the regular case, which would say that every long enough word in every
language L ∈ L(CPC2(CF)) can be pumped in at most C positions, for some
constant C (C depending only on the number of the components). However, the
language L(π) with k > C would not satisfy the pumping lemma. The problem
arises because of the possibility of simultaneous communication symbols occur-
ring on the left side of productions, that implies that the number of positions
that could be pumped does not depend only on the number of the components.

13

References

[1] J.Kari. Decision Problems concerning Cellular Automata. University of
Turku, PhD Thesis (1990).

[2] Gh.Paun. On the power of synchronization in parallel communicating gram-
mar systems. Stud. Cerc. Matem. 41 vol.3 (1989).

[3] Gh.Paun. Parallel communicating grammar systems: the context-free case.
Found. Control Engineering 14 vol.1 (1989).

[4] Gh.Paun. On the syntactic complexity of parallel communicating grammar
systems. RAIRO/Th. Informatics (submitted).

[5] Gh.Paun, L.Santean. Further remarks on parallel communicating grammar
systems. International Journal of Computer Mathematics 35 (1990).

[6] Gh.Paun, L.Santean. Parallel communicating grammar systems: the regular
case. Ann. Univ. Buc. Ser. Mat.-Inform. 37 vol.2 (1989).

[7] A.Salomaa. Formal languages. Academic Press New York London (1973).

[8] K.Culik, J.Gruska, A.Salomaa. Systolic trellis automata. International Jour-
nal of Computer Mathematics 15 and 16. (1984).

[9] C.A.R.Hoare. Communicating sequential processes. Comm. ACM 21 vol. 8
(1978).

14

